Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris.
نویسندگان
چکیده
We investigated the involvement of gibberellins (GAs) and indole-3-acetic acid (IAA) in the control of longitudinal and cambial growth in current-year shoots of Pinus sylvestris L. Elongating terminal shoots, located at the apex of previous-year (1-year-old) branches in the uppermost whorl on the main stem, were variously decapitated (apical 5 to 10 mm removed), defoliated (all developing needle fascicles removed) and treated with endogenous GA(4/7) or IAA, or both. Shoot length and the radial widths of xylem and phloem were measured, and the concentrations of GA(1), GA(3), GA(4), GA(9) and IAA in the stem were determined by combined gas chromatography-mass spectrometry with deuterated GAs and [(13)C(6)]-IAA as internal standards. Decapitation decreased the production of xylem and phloem and the IAA concentration, but did not alter either longitudinal growth or the concentrations of GAs. Defoliation markedly inhibited shoot elongation, as well as cambial growth, and reduced the concentrations of GA(1), GA(3), GA(4), GA(9) and IAA. Application of GA(4/7) to defoliated shoots promoted longitudinal growth and phloem production, without affecting xylem production or IAA concentration. Application of GA(4/7) and IAA together to decapitated + defoliated shoots increased shoot elongation, xylem and phloem production and IAA concentration, whereas applying either substance alone had a smaller effect or none at all. We conclude that, for elongating current-year shoots of Pinus sylvestris, (1) both the shoot apex and the developing needle fascicles are major sources of the IAA present in the stem, whereas stem GAs originate primarily in the needle fascicles, (2) GAs and IAA are required for both shoot elongation and cambial growth, and (3) GAs act directly in the control of shoot growth, rather than indirectly through affecting the IAA concentration.
منابع مشابه
Ethylene metabolism in Scots pine (Pinus sylvestris) shoots during the year.
Ethylene evolution, concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC conjugates, activities of ACC synthase and ACC oxidase, and cambial growth as measured by tracheid production were monitored from November to July in 1-year-old shoots, and between July and September in current-year shoots, of Scots pine (Pinus sylvestris L.). Needles, buds and four stem parts (cortex, phl...
متن کاملPatterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.
Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. H...
متن کاملLaterally applied Ethrel causes local increases in radial growth and indole-3-acetic acid concentration in Abies balsamea shoots.
The terminal (1-year-old) shoot of quiescent, two-year-old balsam fir (Abies balsamea (L.) Mill.) seedlings was ringed with lanolin containing 0, 1 or 10 mg g(-1) Ethrel, an ethylene-generating compound, and cultured for 6 weeks under environmental conditions favorable for growth. Bud break and the elongation of the current-year terminal shoot were monitored, and the subjacent previous-year ter...
متن کاملEffects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca.
The hormonal control of stem unit (foliar appendage and axillary structure, if present, plus subtending internode) number and length was investigated in shoots of Scots pine (Pinus sylvestris L.) and white spruce (Picea glauca (Moench) Voss). Seedlings were treated with six gibberellins (GA1, GA3, GA4, GA5, GA9 and GA20) and two auxins (indole-3-acetic acid (IAA) and naphthaleneacetic acid (NAA...
متن کاملDevelopmental regulation of indole-3-acetic acid turnover in Scots pine seedlings.
Indole-3-acetic acid (IAA) homeostasis was investigated during seed germination and early seedling growth in Scots pine (Pinus sylvestris). IAA-ester conjugates were initially hydrolyzed in the seed to yield a peak of free IAA prior to initiation of root elongation. Developmental regulation of IAA synthesis was observed, with tryptophan-dependent synthesis being initiated around 4 d and tryptop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 17 11 شماره
صفحات -
تاریخ انتشار 1997